Deploying AI in production has matured significantly. 2026 brings standardized patterns for model serving, cost management, and reliability. At ZIRA Software, our AI systems serve millions of requests with 99.9% uptime.
AI Production Architecture
Modern AI Infrastructure Stack
├── Application Layer
│ ├── API Gateway (rate limiting, auth)
│ ├── Request routing
│ └── Response caching
├── Orchestration Layer
│ ├── Model selection
│ ├── Fallback handling
│ └── Load balancing
├── Model Serving
│ ├── Hosted APIs (Anthropic, OpenAI)
│ ├── Self-hosted models
│ └── Edge models
└── Observability
├── Request logging
├── Cost tracking
└── Quality monitoring
Multi-Model Architecture
// services/ai-orchestrator.ts
interface ModelConfig {
provider: 'anthropic' | 'openai' | 'self-hosted';
model: string;
maxTokens: number;
costPer1kTokens: number;
latencyMs: number;
}
const models: Record<string, ModelConfig> = {
'claude-opus': {
provider: 'anthropic',
model: 'claude-opus-4',
maxTokens: 200000,
costPer1kTokens: 0.015,
latencyMs: 2000,
},
'claude-sonnet': {
provider: 'anthropic',
model: 'claude-sonnet-4',
maxTokens: 200000,
costPer1kTokens: 0.003,
latencyMs: 800,
},
'claude-haiku': {
provider: 'anthropic',
model: 'claude-haiku-3',
maxTokens: 200000,
costPer1kTokens: 0.00025,
latencyMs: 200,
},
};
class AIOrchestrator {
async route(request: AIRequest): Promise<AIResponse> {
const model = this.selectModel(request);
try {
return await this.callModel(model, request);
} catch (error) {
// Fallback to alternative model
const fallback = this.getFallback(model);
return await this.callModel(fallback, request);
}
}
private selectModel(request: AIRequest): ModelConfig {
// Route based on task complexity
if (request.complexity === 'high' || request.requiresReasoning) {
return models['claude-opus'];
}
if (request.latencySensitive) {
return models['claude-haiku'];
}
return models['claude-sonnet'];
}
}
Cost Optimization
// services/cost-manager.ts
class CostManager {
private dailyBudget: number;
private currentSpend: number = 0;
async trackUsage(request: AIRequest, response: AIResponse): Promise<void> {
const cost = this.calculateCost(request, response);
await db.aiUsage.create({
data: {
requestId: request.id,
model: request.model,
inputTokens: response.usage.inputTokens,
outputTokens: response.usage.outputTokens,
cost,
timestamp: new Date(),
},
});
this.currentSpend += cost;
// Alert if approaching budget
if (this.currentSpend > this.dailyBudget * 0.8) {
await this.sendBudgetAlert();
}
}
// Caching to reduce costs
async getCachedOrCompute(
request: AIRequest,
compute: () => Promise<AIResponse>
): Promise<AIResponse> {
const cacheKey = this.computeCacheKey(request);
const cached = await redis.get(cacheKey);
if (cached) {
metrics.increment('ai.cache.hit');
return JSON.parse(cached);
}
const response = await compute();
// Cache deterministic requests
if (request.temperature === 0) {
await redis.setex(cacheKey, 3600, JSON.stringify(response));
}
return response;
}
}
Guardrails and Safety
// services/guardrails.ts
class AIGuardrails {
private contentFilter: ContentFilter;
private piiDetector: PIIDetector;
async validateInput(input: string): Promise<ValidationResult> {
const checks = await Promise.all([
this.contentFilter.check(input),
this.piiDetector.scan(input),
this.checkPromptInjection(input),
]);
const issues = checks.filter(c => !c.passed);
if (issues.length > 0) {
return {
valid: false,
issues: issues.map(i => i.reason),
};
}
return { valid: true };
}
async validateOutput(output: string, context: RequestContext): Promise<ValidationResult> {
// Check for hallucinations
if (context.requiresFactual) {
const factCheck = await this.verifyFacts(output, context.sources);
if (!factCheck.passed) {
return { valid: false, issues: ['Potential hallucination detected'] };
}
}
// Check for harmful content
const contentCheck = await this.contentFilter.check(output);
if (!contentCheck.passed) {
return { valid: false, issues: [contentCheck.reason] };
}
return { valid: true };
}
private async checkPromptInjection(input: string): Promise<CheckResult> {
const patterns = [
/ignore previous instructions/i,
/disregard all prior/i,
/new instructions:/i,
];
const hasInjection = patterns.some(p => p.test(input));
return {
passed: !hasInjection,
reason: hasInjection ? 'Potential prompt injection detected' : undefined,
};
}
}
Observability and Monitoring
// services/ai-metrics.ts
class AIMetrics {
async recordRequest(request: AIRequest, response: AIResponse): Promise<void> {
// Latency
metrics.histogram('ai.latency', response.latencyMs, {
model: request.model,
endpoint: request.endpoint,
});
// Token usage
metrics.counter('ai.tokens.input', response.usage.inputTokens);
metrics.counter('ai.tokens.output', response.usage.outputTokens);
// Cost
metrics.counter('ai.cost', response.cost);
// Quality signals
if (request.feedbackEnabled) {
metrics.gauge('ai.quality.score', response.qualityScore);
}
// Error tracking
if (response.error) {
metrics.counter('ai.errors', 1, {
type: response.error.type,
model: request.model,
});
}
}
}
// Dashboard queries
const dashboardMetrics = {
requestsPerMinute: 'rate(ai_requests_total[1m])',
p99Latency: 'histogram_quantile(0.99, ai_latency_bucket)',
errorRate: 'rate(ai_errors_total[5m]) / rate(ai_requests_total[5m])',
dailyCost: 'sum(increase(ai_cost_total[24h]))',
};
Deployment Patterns
# kubernetes/ai-service.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: ai-service
spec:
replicas: 3
template:
spec:
containers:
- name: ai-service
image: ai-service:latest
resources:
requests:
memory: "512Mi"
cpu: "250m"
limits:
memory: "1Gi"
cpu: "500m"
env:
- name: ANTHROPIC_API_KEY
valueFrom:
secretKeyRef:
name: ai-secrets
key: anthropic-key
livenessProbe:
httpGet:
path: /health
port: 8080
readinessProbe:
httpGet:
path: /ready
port: 8080
---
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: ai-service-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: ai-service
minReplicas: 3
maxReplicas: 20
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
Conclusion
Production AI in 2026 requires robust infrastructure for model serving, cost management, and safety. Multi-model architectures with proper guardrails ensure reliable, cost-effective AI-powered applications.
Deploying AI systems? Contact ZIRA Software for AI infrastructure consulting.