Laravel and Django remain the leading backend frameworks in 2025. Both have evolved significantly with AI integration, real-time features, and modern tooling. At ZIRA Software, we use both frameworks based on project requirements.
2025 Framework Overview
Laravel 11 Django 5.x
├── PHP 8.2+ ├── Python 3.10+
├── Reverb (WebSockets) ├── Channels (WebSockets)
├── Octane (High Performance) ├── ASGI (Async Support)
├── Eloquent ORM ├── Django ORM
├── Blade Templates ├── Django Templates
└── First-party AI packages └── Rich AI/ML ecosystem
Performance Comparison
Benchmark: 10,000 requests, JSON API response
Laravel + Octane (Swoole)
├── Requests/sec: 5,200
├── Avg latency: 8ms
├── Memory: 180MB
└── CPU: 45%
Django + Gunicorn + uvicorn
├── Requests/sec: 3,800
├── Avg latency: 12ms
├── Memory: 220MB
└── CPU: 52%
Winner: Laravel (with Octane)
Note: Both are production-ready for most use cases
Real-Time Capabilities
// Laravel Reverb - Native WebSockets
class MessageSent implements ShouldBroadcast
{
public function broadcastOn(): array
{
return [new PrivateChannel('chat.' . $this->chatId)];
}
}
// Self-hosted, horizontally scalable
// No external service costs
# Django Channels
class ChatConsumer(AsyncWebsocketConsumer):
async def connect(self):
await self.channel_layer.group_add(
self.room_name,
self.channel_name
)
await self.accept()
async def receive(self, text_data):
await self.channel_layer.group_send(
self.room_name,
{'type': 'chat_message', 'message': text_data}
)
Verdict: Laravel Reverb provides simpler setup; Django Channels offers more flexibility.
AI/ML Integration
// Laravel - OpenAI integration
use OpenAI\Laravel\Facades\OpenAI;
$response = OpenAI::chat()->create([
'model' => 'gpt-4-turbo',
'messages' => [['role' => 'user', 'content' => $prompt]],
]);
// Embeddings with pgvector
$results = Document::orderByRaw(
'embedding <-> ?::vector', [$queryEmbedding]
)->limit(10)->get();
# Django - Native Python AI ecosystem
from openai import OpenAI
import numpy as np
from pgvector.django import VectorField
client = OpenAI()
response = client.chat.completions.create(
model="gpt-4-turbo",
messages=[{"role": "user", "content": prompt}]
)
# Direct access to PyTorch, TensorFlow, scikit-learn
import torch
model = torch.load('custom_model.pt')
Verdict: Django wins for ML/AI-heavy applications due to Python ecosystem.
Developer Experience
| Feature | Laravel | Django | |---------|---------|--------| | Learning Curve | Gentle | Moderate | | Documentation | Excellent | Excellent | | CLI Tools | Artisan (extensive) | manage.py (good) | | Admin Panel | Filament/Nova | Built-in | | Code Style | Pint | Black/Ruff | | Testing | PHPUnit/Pest | pytest/unittest |
Ecosystem 2025
Laravel:
- Reverb (WebSockets)
- Pulse (Monitoring)
- Pennant (Feature Flags)
- Folio (File-based routing)
- Octane (Performance)
- Cashier (Payments)
Django:
- Channels (WebSockets)
- Django Ninja (Fast APIs)
- Celery (Task queues)
- Django REST Framework
- Wagtail (CMS)
- django-allauth (Auth)
When to Choose Laravel
✓ PHP team expertise
✓ Rapid application development
✓ E-commerce platforms
✓ SaaS applications
✓ Real-time features (Reverb)
✓ Monolithic architecture preference
When to Choose Django
✓ Python team expertise
✓ AI/ML integration required
✓ Data science applications
✓ Scientific computing
✓ Content-heavy sites
✓ Admin-heavy applications
Code Comparison: REST API
// Laravel
class PostController extends Controller
{
public function index()
{
return PostResource::collection(
Post::with('author')->paginate(20)
);
}
public function store(StorePostRequest $request)
{
$post = $request->user()->posts()->create(
$request->validated()
);
return new PostResource($post);
}
}
# Django REST Framework
class PostViewSet(viewsets.ModelViewSet):
queryset = Post.objects.select_related('author')
serializer_class = PostSerializer
permission_classes = [IsAuthenticatedOrReadOnly]
pagination_class = StandardPagination
def perform_create(self, serializer):
serializer.save(author=self.request.user)
Conclusion
Both frameworks excel in 2025. Laravel leads in developer experience and real-time features. Django dominates AI/ML integration and data-heavy applications. Choose based on team expertise and project requirements.
Need framework guidance? Contact ZIRA Software for architecture consultation.